# **Corrugated Technical Overview**

#### **Board Flutes and Callipers**

Flutes letters indicate the height (pitch) of the corrugation in the board

Common Flutes: A, C, B, E, F, G, N, Micro



Multi-wall board (Double & Triple Wall) usually combine different flutes for additional strength (i.e. B/C Double or A/C/E Triple)

The heavier the board weight, the more force required to pull the board through the corrugator.



## **Corrugated Technical Overview**

### **Common Board Types**

• Two liners (1 Top & 1 Bottom) + One Medium



Double Wall

• Three liners (1 Top, 1 Bottom & 1 Shared Middle) + Two Mediums



Triple Wall

• Four liners (1 Top, 1 Bottom & 2 Shared Middle) + Three Mediums





# **Types of Paper**

• Liners – The outside of the corrugated sheet

• Mediums – The inside of the corrugated sheet









## The Glue Machine







2. The Spring needs to be in the middle of its travel.



# Double gluer varibond







## Jet Assist System







## Jet Assist System

www.cristini.com

Used to Assist in achieving Higher Run Speeds on Double Wall and Heavy Weight Board

#### Achieves it by:

- 1. Using Low Pressure Steam 0,5 Bar. (Low pressure to avoid blowing the glue from the flute tips.)
- 2. Heats the adhesive close to the gel point to facilitate bonding at the double backer.
- 3. Should only be use at speeds greater than 300 fpm. Ideally, it should be automatic to turn on when speed is achieved.





# **Corrugating Machines**

The hot plates in corrugating machines have basically remained unchanged for nearly a century.

The most significant changes have been in the drive and pressure systems (these latter having influenced the belt manufacturers)

There are three main systems of applying pressure to the board:

- 1. Pressure rollers
- 2. Press Shoes
- 3. Sandwich systems



## **BALLAST ROLLS SYSTEMS**

#### Description:

• Heavy steel rollers

#### Advantages:

• Rolling coefficient causes little wear on the back of the belt

#### Disadvantages:

- Not always is guaranteed a constant pressure on the back of the board or belt.
- Does not compensate for the normal loss in caliper at the edges of the belt.
- Maintenance of bearings is high. Bad bearings can cause guiding problems and excessive wear on the belt.

www.cristini.com

• Roller vibration can cause collapse of the flute, particularly in the seam area.



## **Double Facer Section**



www.cristini.com

## Ballast Rolls

- High maintenance item
  - Housekeeping
  - Bearings



Langston has I, II, III, & IV

 Can have Different Sizes and Different Profiles (Crowned)





# **Ballast Rolls**



1<sup>st</sup> Ballast Roll is normally bigger in Diameter and Heavier than rest of ballast rolls

The intent is to have the combined board make contact with the hot plates quickly by weighing the corrugator belt. Without it, the belt would not angle down quickly. The 1<sup>st</sup> roll is needed even if the double backer has a "hot shoe" type of system.





## Pressure distribution by a roller machine





## **Thickness variation on roller machine**







Bottom belt





## **PRESSURE SHOES**

#### Description:

• Steel plates (shoes) installed on springs or air bellows.

#### Advantages:

- Excellent pressure control on the whole machine width.
- Can compensate for the normal loss in calliper of belt due to wear.

#### Disadvantages:

• Can cause excessive wear on the back of the belt and high energy consumption.

•On the edges and with narrower board they can tilt downwards and damage the belt



## **Pressure shoes**

They can Adjust to Belt Wear or Hot plates deformation





# Pressure distribution on a shoe machine





## Thickness variation on shoe machine



Cannot compensate for localized belt thickness variations



## **NORMAL SHOE PRESS**





## **S-PRESS**





# **S-PRESS** 100% COVERAGE RIGHT UP TO THE EDGE OF <u>ANY</u> PAPER WIDTH HOT PLATE



## **Pressure Shoes Machine**

Top belt

www.cristini.com



Bottom belt



## Sandwich System

#### Description:

• Various pressure systems on hot plates but the belt is present and working only in the traction section (or cold section).

#### Advantages:

• Excellent air movement around the board while in contact with the hot plates.

#### Disadvantages:

• Operators can easily get burned by accidental contact with hot plates during the thread in of the paper.

• Direct contact between pressure shoes and board can cause streaks in the liner with consequent reduction of printing quality

www.cristini.com

•To pull board it is necessary to use vacuum systems with high energy consumption and costly belts with high traction properties.



## Sandwich system







## **Belt construction**

Traditional belts for corrugating machines

1. Woven belts

2. Needled belts

3. Multi Spirals



## **WOVEN BELTS**

#### Construction:

• 4-6 layer bases of 100% polyester yarns.

#### Advantages:

- Good running life.
- Good coefficient of friction between belt and board.

#### Disadvantages:

• They are prone to elongate above 1%, sometimes requesting a re-seaming to reduce excessive length.

• Very low permeability (6-8 CFM)

• More prone to marking of the board in the seam area (it is not possible to have a protective flap)

www.cristini.com

•*The important weight requires higher energy consumption of the drive motor.* 



## **NEEDLED BELTS**

*Construction:* 

• 2-4 layer base 100% polyester needled with special 100% synthetic fibres

Advantages:

• Higher permeability compared to woven belts (12 – 24 CFM)

•It is possible to make a flap covering the seam to guarantee absence of seam marking.

www.cristini.com

• They run very well on high speed machines.

Disadvantages:

• Belt edges are prone to some loss of calliper due to abrasion effect from starch residues



## **OBJECTIVES OF A CORRUGATOR BELT**

- To remove humidity in the least possible time and more uniformly as possible.
- To resist abrasion particularly on the edges
- To be very stable and to run perfectly straight in the machine
- To have and keep a very uniform thickness
- To have a very strong non marking seam.
- To reduce the energy consumption.





# A Quantum Leap in Corrugator Belt Design and Function



How can



help your corrugator?

www.cristini.com

### Very High Permeability- fast drying

*Uniform thickness throughout life- even pressure distribution* 

Completely Self Cleaning- less maintenance and improved safety



How can



help your corrugator?

www.cristini.com

### **Completely Seamless- less marking**

Saves Energy-lower production costs

Improved board quality-less claims

Documented Board Calliper Increase- improved board parameters



# Supporting Technical Data from Field Studies





### ELECTRIC ENERGY CONSUMPTION

#### SPIRAL BELT VS. STD BELT

|           | DATA M/MIN CO<br>(DATE) FPM GR<br>(SF |                      | COLLA COLLA<br>GRUPPO PIANI<br>(SF GAP) (DB GAP) |                       | FRENATURA<br>CARTA<br>(MED BRAKE<br>PRES.) | FRENO PONTE<br>(BRIDGE<br>GUIDE AIR<br>PRES) | PATTINI PIANI<br>(DB BRAKE<br>PRES) | LUCE<br>CARTA<br>(WEB<br>WIDTH) | SPESSORE<br>CARTONE<br>(CALIPER) | PRESSIONE<br>ENTRATA<br>TAGLIERINA<br>SUP/INF (PULL<br>ROLL TOP/BTM) |       | grammatura<br>Carta (paper<br>Grades) | AMPERAGGIO<br>MOTORE<br>(AMPS) | onda<br>(flute) |
|-----------|---------------------------------------|----------------------|--------------------------------------------------|-----------------------|--------------------------------------------|----------------------------------------------|-------------------------------------|---------------------------------|----------------------------------|----------------------------------------------------------------------|-------|---------------------------------------|--------------------------------|-----------------|
|           |                                       |                      | мм<br>μ"                                         | мм<br>µ"              | %                                          | BAR/PSI                                      | BAR/PSI                             | MM/"                            | MM/μ                             | SUP.%                                                                | INF.% | g/m2 - LBS                            |                                |                 |
| Std Felt  | 23/03/2005                            | 153 m/min<br>504 fpm | 0.18 mm<br>0.007 μ "                             | 0.203 mm<br>0.008 μ " | 28%                                        | 4,5 bar<br>64 psi                            | 2,8 bar<br>40 psi                   | 2160 mm<br>85 "                 | 2,87 mm<br>113 μ                 | 30%                                                                  | 47%   | 127+112+127g/m2<br>26-23-26 lbs       | 105                            | В               |
| Spirabelt | 11/04/2005                            | 160 m/min<br>525 fpm | 0.18 mm<br>0.007 μ "                             | 0.203 mm<br>0.008 μ"  | 28%                                        | 2,8 bar<br>40 psi                            | 2,38 bar<br>34 psi                  | 2235 mm<br>88 "                 | 2,94 mm<br>116 μ                 | 30%                                                                  | 50%   | 26/23/26 lbs                          | 51                             | В               |
| CASO 1    |                                       |                      |                                                  |                       |                                            |                                              |                                     |                                 |                                  |                                                                      |       |                                       |                                |                 |
| Std Felt  | 23/03/2005                            | 207 m/min<br>608 fpm | 0.203 mm<br>0.008 μ"                             | 0.203 mm<br>0.008 μ " | 28%                                        | 4,9 bar<br>70 psi                            | 1,85 bar<br>26 psi                  | 1550 mm<br>61 "                 | 2,89 mm<br>114 μ                 | 30%                                                                  | 50%   | 150+127+150g/m2<br>31-26-30 lbs       | 105                            | В               |
| Spirabelt | 11/04/2005                            | 152 m/min<br>500 fpm | 0.18 mm<br>0.007 μ "                             | 0.18 mm<br>0.007 μ "  | 28%                                        | 2,9 bar<br>42 psi                            | 2,1 bar<br>30 psi                   | 2000 mm<br>79 "                 | 2,97 mm<br>7 μ                   | 32%                                                                  | 48%   | 31/26/30                              | 54                             | В               |
| CASO 2    |                                       |                      |                                                  |                       |                                            |                                              | 6                                   |                                 |                                  |                                                                      |       |                                       |                                |                 |
| Std Felt  | 23/03/2005                            | 131 m/min<br>430 fpm | 0.203 mm<br>0.008 μ "                            | 0.203 mm<br>0.008 μ " | 20%                                        | 2,52 bar<br>36 psi                           | 2,94 bar<br>42 psi                  | 2235 mm<br>88 "                 | 4,01 mm<br>158 μ                 | 28%                                                                  | 46%   | 170+112+170g/m2<br>35-23-35 lbs       | 105                            | С               |
| Spirabelt | 12/04/2005                            | 161 m/min<br>531 fpm | 0.203 mm<br>0.008 μ "                            | 0.203 mm<br>0.008 μ " | 22%                                        | 2,52 bar<br>36 psi                           | 2,8 bar<br>40 psi                   | 2000 mm<br>79 "                 | 4,06 mm<br>160 μ                 | 36%                                                                  | 45%   | 35/23/35                              | 51                             | С               |
| CASO 3    |                                       |                      |                                                  | /                     |                                            |                                              |                                     |                                 |                                  |                                                                      |       |                                       |                                |                 |



# THE REASONS FOR ELECTRIC ENERGY SAVING

- Lower weight of belt
- Lower coefficient of friction belt/pressure plates
- Lower tension required in the belt (3-4 KN/mt)
- Less pressure needed at pressure plates (particularly at traction section)



# What does this means in \$\$\$?

| CALC               | ULATIC     | on of e   | ENERG       | Y SAVIN     | IG TH/  | ANKS | TO S               | PIRAB     | ELT        |      |         |     |        |      |
|--------------------|------------|-----------|-------------|-------------|---------|------|--------------------|-----------|------------|------|---------|-----|--------|------|
| KW=                | (HPx0,746) | WORKING   | HRS)/MOT    | OR EFFICIEN | ICY     |      | WORKIN             | G HRS/YEA | R/SHIFT    | 2080 |         | _   |        |      |
| KW=                | (WATTS x   | WORKING   | HRS)/1000   |             |         |      | COST OF ENERG      |           | /KWH 0,0€  |      | USD/KWH |     |        |      |
|                    |            |           |             |             |         |      | COST OF ENERGY/KWH |           |            | 0,15 | EURO    | /KW | /H     |      |
| TO CHAN            | GE AMPS I  | NTO WATTS | G (3 PHASE) | )           |         |      | WATTS=             | VOLTSXAN  | /IPS x 1,7 | 32   |         |     |        |      |
| EXAM               | PLES(u     | sa)       |             |             |         |      |                    |           |            |      |         |     |        |      |
|                    |            | VOLTS     | AMPERES     |             | WATTS   |      |                    |           |            |      |         |     |        |      |
| SPIRABE            | LT         | 480       | 59          | 1,73        | 48.994  | WATT |                    |           |            |      |         |     |        |      |
| STD BEL            | Г          | 480       | 98          | 1,73        | 81.379  | WATT |                    |           |            |      |         |     |        |      |
| DIFFERE            | NCE        |           |             |             | 32.386  | WATT |                    |           |            |      |         |     |        |      |
|                    |            | WATT      |             | HRS/YEAR    |         |      |                    |           |            |      |         |     | 1      |      |
| SAVING/S           | SHIFT      | 32.386    | Х           | 2080        | /       | 1000 | =                  | 67362,05  | KWH        | Х    | 0,06    | =   | 4.042  | USD  |
| SAVING/2           | 2 SHIFTS   | 32.386    | Х           | 4160        | /       | 1000 | =                  | 134724,1  | KWH        | Х    | 0,06    | =   | 8.083  | USD  |
| SAVING/3           | 3 SHIFTS   | 32.386    | Х           | 6240        | /       | 1000 | =                  | 202086,1  | KWH        | Х    | 0,06    | =   | 12.125 | USD  |
| EXAM               | PLES (E    | Europe)   |             |             |         |      |                    |           |            |      |         |     |        |      |
|                    |            | VOLTS     | AMPERES     |             | WATTS   |      |                    |           |            |      |         |     |        |      |
| SPIRABE            | LT         | 380       | 180         | 1,73        | 118.332 |      |                    |           |            |      |         |     |        |      |
| STD BEL            | Г          | 380       | 270         | 1,73        | 177.498 |      |                    |           |            |      |         |     |        |      |
| DIFFERE            | NZA        |           |             |             | 59.166  | WATT |                    |           |            |      |         |     |        |      |
|                    |            | WATT      |             | HRS/YEAR    | /       |      |                    |           |            |      |         |     |        |      |
| SAVING/SHIFT       |            | 59.166    | Х           | 2080        | 1       | 1000 | / =                | 123065,3  | KWH        | Х    | 0,15    | =   | 18.460 | EURO |
| SAVING/2 SHIFTS    |            | 59.166    | Х           | 4160        | 1       | 1000 | / =                | 246130,6  | KWH        | Х    | 0,15    | =   | 36.920 | EURO |
| SAVING/3 SHIFTS 59 |            | 59.166    | Х           | 6240        | /       | 1000 | =                  | 369195,8  | KWH        | Х    | 0,15    | =   | 55.379 | EURO |



# Steam Consumption SpiraBelt™ vs Standard Belt

Considering:

•100% the total steam produced, in general:

•60% will be used by glue kitchen, corr. rolls, pre heaters etc.

•40% will be used by double backer

•A 10% reduction of heat by SpiraBelt<sup>™</sup> will imply

A SAVING OF 4% OF TOTAL STEAM COSTS!! But much bigger savings have been reported



# The reasons for steam saving with SpiraBelt™ vs a standard belt

SpiraBelt<sup>™</sup> allows the board to dry faster

This means the board dries in the first or second section if hot plates temperature remains constant

This causes the board to over dry and to accumulate statatic electricity, increasing board drag on hot plates

To prevent this, lower temperature settings are required, increasing in the three sections: Example: 4 bar, 6 bar, 8 bar (not the reverse)

This allows to reduce the amount of glue applied



## **TEMPERATURE SETTINGS**





# THE REASONS FOR IMPROVED BOARD QUALITY

• There are no seam marks

•The board exits the double backer perfectly bonded, crisp but not tood dry

• There are no delaminations at cut off knife

•The board is flatter

• The board comes off colder and can be transformed into boxes right away. No need to condition it. No risk of condensation damaging the board

•Less glue = less risk of washboard



# Classic Washboard due to excessive glue





## Washboard





# € NUMBERS IN A MODERN CORRUGATING MILL

A modern corrugating mill producing sheet board (not boxes) has an average waste of 7% in total

• This waste comes form 2-2,5% from trim and 4,5-5% from waste on the corrugator (this includes waste on bobbins, start up waste etc.)

•A modern mill working in three shifts produces approximately 180 millions m2 of board, therefore approximately 60 millions m2 per shift

• This accounts to approximately 30,000 tons of paper/shift/year.

•At cost/ton of paper ranging from 350 to 500 Euro/ton this accounts to 10,5 to 15 millions euro/year per shift.

A reduction of 1% in waste is equivalent from 105,000 to 150,000 € /year/shift





Based on our experience, we are now able to pinpoint the perfect customer for SpiraBelt™

Ideal Corrugator Setup:

• All corrugators equipped with flat pressure systems (we are checking if OK also on roller machines)

• Machines that have a high traction bottom belt

• The belt lifting system is in good working order

• Pressure plates are well aligned, clean, square and are pressing uniformly on belt

(make sure the pressure plates system can adapt to a thinner belt!!)

• Rolls are cleaned and square

• The machine has only ONE drive motor (Fosber can have TWO motors)

• Capacity to reduce steam pressure lower than 1 bar



# Forces applied when using traditional belts



20-30%



# Forces applied when using SpiraBelt™





# **Example of differential transmission**





www.cristini.com

Some machines have TWO motors: make sure you get this information With two motors Spirabelt cannot be used.



# Tension variation on top belt

On the hot plates a standard belt can stretch up to 100 mm SpiraBelt™ does not stretch at all





## **PROVEN BENEFITS OF SPIRABELT**

- IMPROVED BOARD QUALITY
- LOWER ELECTRIC AND STEAM CONSUMPTION
- REDUCED GLUE CONSUMPTION
- REDUCED WASTE
- IMPROVED SAFETY
- LESS MAINTENANCE COSTS (No Seam problems, less bearings

change, no cleaning necessary, faster installation with less people)



## **CUSTOMERS HAVE SAID:**

#### EUROPAK ALBARRAQUE (Portugal)

Easy to handle and to install Considerable reduction in energy consumption at main drive Considerable reduction in steam required for perfect bonding Bonding takes place in 0 hour instead of 4 hours

#### MONDI PINETOWN (SAF):

Marked improvement of board quality when producing micro board and using difficult, sealed papers. Remarkable reduction in energy (electric and steam) Excellent stability and planarity Waste has considerably reduced; final calculation at the end of the year

#### SCA VERNAMO (Sweden)

Can only run with SpiraBelt<sup>™</sup> and will never turn back to standard belts

#### SCA PORCARI (ITALY)

We can produce heavy triple wall at more than 150 m/min and the board comes out of the hot plates already perfectly dry; no delamination at the slitter scorer

